
Installing Attest Framework to iOS App for Unit Testing
A step-by-step guide to set up Deque's Attest Framework in your app

For Automated Testing in Swift:

1. Add the framework to your Test Suite:

With your app open in XCode, drag the “Attest.framework” file into the “Frameworks”
folder of the app (located in the file selector). A pop up box will appear. Confirm that
“Copy Items if needed,” “Create folder references,” and the Unit Test Target for your
app are all selected (do not select the app itself!). It should look identical to the image
below. Select “Finish” to import the framework.

Step 1: Add the Attest Framework to your Test Suite

2. Navigate to the Unit Test Target settings:

Next, select the xcodeproj file of your app from the file selector. A screen with the tabs
“Info” and “Build Settings” will appear, with your app name listed under “PROJECTS” on
the left-hand side. Select the unit test target under “TARGETS,” as shown in the image
below.

Step 2: Select unit tests under TARGETS

3. Confirm that the Attest.framework was properly added:

Select the “Build Phases” tab at the top of the screen. Expand the “Link Binary With
Libraries” section if it is not already expanded. Check that “Attest.framework” is already
in the “Link Binary with Libraries” section. If it is not, drag and drop it into this section
from the file selector.

 Step 3: Confirm the Attest Framework is already properly linked into your Unit Tests

4. Confirm that your app builds and can run the test suite as normal.

For Automated Testing in Objective-C:

1. Please follow steps 1-3 in “For Automated Testing in Swift.” Note that the app will not
build – this is normal. To allow this framework to work properly with Objective-C,
update the Build Settings to “Always Embed Swift Standard Libraries”:

a. Navigate to the Unit Test Target settings (per Step 2 in “For Automated Testing
in Swift).

b. Click on the “Build Settings” tab.

c. In the search box, type “embed.” Under “Build Options,” change “Always Embed
Swift Standard Libraries” to “Yes.”

Step 1c: Update “Always Embed Swift Standard Libraries” to “Yes.”

d. Confirm that your app builds and can run the test suite as normal.

Running the Attest Framework in Automated Tests (Example in Swift):

To run the Attest Framework during automated testing, a few lines of code will need to be
added to your unit tests. Below are some examples of how to use the Attest Framework in
your automated tests. We used XCTest to demonstrate.

 The following code sample is a simple example of using the Attest Framework.

First, we call “initialFrom(storyBoardName:) to store Main.storyboard’s initial View Controller in
as a variable named “viewController.” This function is part of an extension we added to
UIViewController, available for your use. More information regarding this function and the
UIViewController extensions can be found in the Attest Framework documentation.

Next, we call viewController.forceLoad() to ensure that all views have correctly loaded. There are
some interesting things that iOS does not do in a unit testing environment regarding view
loading. We have added extensions to UIViewController and UIView to help mitigate many of
these issues. To ensure that the Attest Framework is used to its full potential, we highly
recommend calling this “forceLoad()” function (or a variation of it) to your unit tests when using
our framework. See the Attest Framework documentation regarding the UIView and
UIViewController extensions for more information.

Finally, we call Attest.that(viewController:).isAccessible() to ensure that all views in
viewController are accessible. Attest.that(viewController:) expects a UIViewController to test.
There are other versions of Attest.that() that will be shown in the other examples, and can be
found in the Attest Framework documentation. isAccessible() has an optional parameter
(resultConsumer) that will be explained in other examples. If no parameter is defined in
isAccessible(), it will assume that all views in the view controller should be completely
accessible. Any view that is found to be inaccessible will fail the test case, and a description of
the violation will be in the log.

import XCTest
import Attest

@testable import TestApp

class TestAppTests: XCTestCase {

 func testAccessibility() {
 let viewController = UIViewController.initialFrom(storyBoardName: "Main")

 viewController.forceLoad()

 Attest.that(viewController: viewController).isAccessible()
 }

The following examples will explain the optional parameter of isAccessible().

isAccessible()’s parameter, resultConsumer, is important to use if you expect accessibility
violations (or “best practice” violations, or if you would just like to check the number of passing
views). We will give a few different examples of how to make sure that the violations found are
the ones that you expected.

Note: In these examples, we have removed the forceLoad() function for clarity.

Notice in this example, we use Attest.that(storyBoardName:) instead of Attest.that(viewController:
). This function retrieves the initial UIViewController from the storyboard listed and returns an
initialized Assert, which is the class needed to call isAccessible(). This version of the Attest.that()
function can retrieve a specific UIViewController in a Bundle as well; however, these are set to
nil by default if no parameter is listed. See the Attest Framework documentation for more
information on correct usage of the Attest.that() functions.

The parameter resultConsumer of the isAccessible() function is a function expecting an
Attest.Result as the parameter. In the above example, we expect the initial UIViewController in
storyboard “Main” to violate one Rule, as seen in the first call to XCTAssertEqual. The expected
Rule being violated is the Color Contrast Rule, as shown in the second call to XCTAssertEqual.
There will be two views in the initial UIViewController that are expected to violate this Rule, as
seen in the third call to XCTAssertEqual. If there are additional violations, the test case will fail,
and a description of the violation can be found in the log.

func testAccessibility_2() {
 Attest.that(storyBoardName: "Main").isAccessible({(result:Attest.Result) in

 XCTAssertEqual(1, result.violations.count)

 XCTAssertEqual(RuleID.ColorContrast, result.violations.first?.ruleId)

 XCTAssertEqual(2, result.violations.first?.nodes.count)
 })

If you expect more than one Rule to be in violation, you can include a switch statement in your
resultConsumer function, as seen in the following example:

In this example, the initial UIViewController in Main.storyboard is expected to have 4 violations
of the DontIntersect Rule and 2 violations of the DynamicType Rule. The “default” Rule is listed
to have 0 violations, since we do not expect any other Rules to be in violation. If this is not the
case, and other Rules are violated, the test case will fail and a description of the violation(s) can
be found in the log. See the Attest Framework documentation for more information on the
different Rules and proper usage of the Attest.that() functions.

func testAccessibility_3() {
 Attest.that(storyBoardName: "Main").isAccessible({(result:Attest.Result) in

 for violation in result.violations {
 switch violation.ruleId {
 case RuleID.DontIntersect:
 XCTAssertEqual(4, violation.nodes.count, violation.description)

 case RuleID.DynamicType:
 XCTAssertEqual(2, violation.nodes.count, violation.description)

 default:
 XCTAssertEqual(0, violation.nodes.count, violation.description)
 }
 }
 })

Running the Attest Framework in Automated Tests (Example in
Objective-C):

To run the Attest Framework during automated testing, a few lines of code will need to be
added to your unit tests. Below are some examples of how to use the Attest Framework in
your automated tests. We used XCTest to demonstrate.

 The following code sample is a simple Objective-C example of using the Attest Framework.

First, we call initialFromStoryBoardName: to store Main.storyboard’s initial View Controller in a
variable named “viewController.” This function is part of an extension we added to
UIViewController, available for your use. More information regarding this function and the
UIViewController extensions can be found in the Attest Framework documentation.

Next, we call [viewController forceLoad] to ensure that all views have correctly loaded. There are
some interesting things that iOS does not do in a unit testing environment regarding view
loading. We have added extensions to UIViewController and UIView to help mitigate many of
these issues. To ensure that the Attest Framework is used to its full potential, we highly
recommend calling this “forceLoad” function (or a variation of it) to your unit tests when using
our framework. See the Attest Framework documentation regarding the UIView and
UIViewController extensions for more information.

Finally, we call [[Attest thatWithViewController:] isAccessible] to ensure that all views in
viewController are accessible. [Attest thatWithViewController:] expects a UIViewController to

#import <XCTest/XCTest.h>
#import "ViewController.h"
#import <Attest/Attest-Swift.h>

@interface ViewController_test : XCTestCase {}

@end

@implementation ViewController_test

- (void)testAccessibility {

 ViewController* viewController = [UIViewController initialFromStoryBoardName:@"Main"];

 [viewController forceLoad];

 Result* result = [[Attest thatWithViewController:viewController] isAccessible];

 XCTAssertEqual(result.violations.count, 0);

test. There are other versions of [Attest that] that will be shown in the other examples, and can
be found in the Attest Framework documentation. isAccessible returns a Result*. This Result
can be printed or parsed through with Asserts to ensure that each view in the UIViewController
is accessible. In this example, we expect that there will be no violations, so we used an
XCTAssert to assure that the UIViewController has no violating views. We also decided to see a
detailed list of the Result. Printing the Result’s description shows the view hierarchy and lists
the views in violation of WCAG2.0 guidelines, the views that do not pass WCAG2.0 best
practices, the views that pass WCAG2.0 guidelines, and the views that are not applicable to
certain Rules.

The following examples will explain the many things that can be done with the returned Result
from isAccessible.

Note: In these examples, we have removed the forceLoad function for clarity.

Notice in this example, we use [Attest thatWithStoryBoardName] instead of [Attest
thatWithViewController]. When the other parameters are NULL, it retrieves the initial
UIViewController from the storyboard listed and returns an initialized Assert, which is the class
needed to call isAccessible. This version of the [Attest that] function can retrieve a specific
UIViewController in a Bundle as well; however, these are set to NULL in this example. See the
Attest Framework documentation for more information on correct usage of the [Attest that]
functions.

With the Result* returned, we can use XCTAsserts if we expect there to be violations. In this
example, we expect the initial view controller of Main.storyboard to violate one Rule, as shown
in the first call to XCTAssertEqual. We expect three views in this view controller to violate this
Rule, as shown in the second call to XCTAssertEqual. The Rule being violated should be the
Dynamic Type Rule, so we check that with the third call to XCTAssertEqual. If there are
additional violations, the test case will fail, and a description can be found in the log.

- (void)testAccessibility2 {
 Result* result = [[Attest thatWithStoryBoardName:@"Main”

viewControllerID:NULL bundle:NULL] isAccessible];

 NSLog(@"%@", result.description);

 XCTAssertEqual(result.violations.count, 1);
 XCTAssertEqual(result.violations.firstObject.nodes.count, 3);
 XCTAssertEqual(result.violations.firstObject.ruleId, RuleIDDynamicType);

If you expect more than one Rule to be in violation, you can use a switch statement to parse
through each Rule, as seen in the following example:

In this example, the view named “view” is expected to have 4 violations of the DontIntersect
Rule and 2 violations of the DynamicType Rule. The “default” Rule is listed to have 0 violations,
since we do not expect any other Rules to be in violation. If this is not the case and other Rules
are violated, the test case will fail and a description of the violation(s) can be found in the log.
See the Attest Framework documentation for more information on the different Rules and
proper usage of the [Attest that] functions.

- (void)testAccessibility3 {
 Result* result = [[Attest thatWithView:view] isAccessible];

 for (Entry *violation in result.violations) {
 switch(violation.ruleId) {

 case RuleIDDontIntersect:
 XCTAssertEqual(violation.nodes.count, 4, @"%@", violation.description);
 break;

 case RuleIDDynamicType:
 XCTAssertEqual(violation.nodes.count, 2, @"%@", violation.description);
 break;

 default:
 XCTAssertEqual(violation.nodes.count, 0, @"%@", violation.description);
 break;
 }

For Manual Testing in Swift:

IMPORTANT: In order for highlighting to work from the Attest UI Client, VoiceOver MUST be
turned on. Highlighting will not work on Simulators.

1. Add the framework to your app:

With your app open in XCode, drag the “Attest.Framework” file into the “Frameworks”
folder of your app (located in the file selector). A pop up box will appear. Confirm that
“Copy Items if needed,” “Create folder references,” and the target for your app are all
selected. It should look identical to the image below. Select “Finish” to import the
framework.

Step 1: Add the Attest Framework to your app

2. Navigate to your app settings:

Next, select the xcodeproj file of your app from the file selector. A screen with the tabs
“Info” and “Build Settings” will appear, with your app name listed under “PROJECTS” on
the left-hand side. Select your app name under “TARGETS,” as shown in the image
below.

Step 2: Select your app under “TARGETS”

3. Add the framework as an Embedded Framework:

Select the “Build Phases” tab at the top of the screen.

a. Confirm that “Attest.framework” is already in the “Link Binary with Libraries”
section. If it is not, drag and drop it into this section from the file selector.

b. Expand the “Embed Frameworks” section and drag the Attest Framework into it.
It should look similar to the image below.

Step 3: Add the Attest Framework as an Embedded Framework

4. Confirm that your app builds and can run as normal.

5. Next, open the “AppDelegate.swift” file in your app.
a. In this file, import the Attest Framework:

b. In the function applicationWillResignActive(_ application: UIApplication), add the
following line of code:

c. In the function applicationDidBecomeActive(_ application: UIApplication), add the
following line of code:

Note: the number “48484” may change, depending on your setup.
Attest.startServer(_ port: UInt) asks for a port number as a parameter. In most
cases, this number will be 48484.

The AppDelegate file should look similar to this when you are done:

6. Confirm that your app builds and can run as normal.

import Attest

Attest.stopServer()

Attest.startServer(48484)

import UIKit
import Attest

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 func applicationWillResignActive(_ application: UIApplication) {

 Attest.stopServer()
 }

 func applicationDidBecomeActive(_ application: UIApplication) {

 Attest.startServer(48484)
 }

For Manual Testing in Objective-C:

IMPORTANT: In order for highlighting to work from the Attest UI Client, VoiceOver MUST be
turned on. Highlighting will not work on Simulators.

1. Please follow steps 1-3 in “For Manual Testing in Swift.” Note that the app will not build
– this is normal. To allow the framework to work properly with Objective-C, update the
Build Settings to “Always Embed Swift Standard Libraries”:

a. Navigate to the App Target settings (per Step 2 in “For Manual Testing in Swift”).

b. Click on the “Build Settings” tab.

c. In the search box, type “embed.” Under “Build Options,” change “Always Embed
Swift Standard Libraries” to “Yes.”

Step 1c: Update “Always Embed Swift Standard Libraries” to “Yes.”

d. Confirm that your app builds and can run the test suite as normal.

2. Next, open the “AppDelegate.m” file in your app.

a. In this file, import the Attest Framework:

b. In the function –(void)applicationWillResignActive:(UIApplication *)application, add
the

@import Attest;

[Attest stopServer];

following line of code:

c. In the function –(void)applicationDidBecomeActive:(UIApplication *)application, add
the following line of code:

Note: the number “48484” may change, depending on your setup. [Attest
startServer(_ port: UInt)] asks for a port number as a parameter. In most cases,
this number will be 48484.

The AppDelegate file should look similar to this when you are done:

3. Confirm that your app builds and can run as normal.

[Attest startServer:48484];

@import Attest;

@implementation DQAppDelegate

- (void)applicationWillResignActive:(UIApplication *)application {
 [Attest stopServer];
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 [Attest startServer:48484];
}

	For Automated Testing in Swift:
	For Automated Testing in Objective-C:
	Running the Attest Framework in Automated Tests (Example in Swift):
	Running the Attest Framework in Automated Tests (Example in Objective-C):
	For Manual Testing in Swift:
	For Manual Testing in Objective-C:

Accessibility Report

		Filename:

		Attest Framework Installation for iOS.pdf

		Report created by:

		Scott Cooley, Product Documentation Specialist, scott.cooley@deque.com

		Organization:

		Deque Systems, Inc., Product Development

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
