Installing Attest Framework to iOS App for Unit Testing
A step-by-step guide to set up Deque's Attest Framework in your app

For Automated Testing in Swift:

1. Add the framework to your Test Suite:

With your app open in XCode, drag the “Attest.framework” file into the “Frameworks”
folder of the app (located in the file selector). A pop up box will appear. Confirm that
“Copy Items if needed,” “Create folder references,” and the Unit Test Target for your
app are all selected (do not select the app itself!). It should look identical to the image
below. Select “Finish” to import the framework.

® A TEST | 4l iPhane & YOUR AFP NAME | Build TEST: Failed | Today at 1:42 PM

BRAaAes= i B < Choose options for adding these files:
¥ 2 YOUR APP NAME L}
b4 PROJECT Destination: & Copy items if needed
& YOUR A Added folders: Create groups
M TARGETS D Create folder references
Agsets xcassels & YOUR & Add to targets: A YOUR APP NAME

LaunchScreen.staryboard YOUR A (] YOUR APP NAMETests
infio.plist STANDARD} &
TESTTests
s TESTTests swift L]
info-plist
s festUtils.swift A
» [Products
I ¥) Frameworks l

Cancel [Finish™
On Demand Resources Prefetch Order
¥ Bulld Locations

Build Products Path build

Step 1: Add the Attest Framework to_yourTest Suite

Navigate to the Unit Test Target settings:

Next, select the xcodeproj file of your app from the file selector. A screen with the tabs
“Info” and “Build Settings” will appear, with your app name listed under “PROJECTS” on
the left-hand side. Select the unit test target under “TARGETS,” as shown in the image
below.

B2 QM @0 @8 B/ <
¥) YOUR APP NAME L |
¥ [TEST

= AppDelegate.swift

» ViewControlles.swift

Main.storyboard M

PROJECT

L YOUR APP NAME

General Resource Tags Info Bulld Settings

Basic Customized m Levels

B YOUR APP NAME

Assets.ncassels

LaunchScreen.storyboard
info.plist
¥ [TESTTests

s TESTTests.swift M
Info.phist
= testUtils. swift A
» Products

¥ | Frameworks

Step 2: Select unit tests under TARGETS

4+

TARGETS
A YOUR APP NAME

YOUR APP NAMETests

¥ Architectures

Additional SDKs

Archilectures
Base 5D
¥ Build Active Architecture Onby
Debug
Release

Supgerted Platforms
¥ Valid Architectures

¥ Assats

Assel Pack Manifest URL Prefix
Embed Asset

cks In Product Bundle
Enable On Demanc Resources

On Demand Resources Initial Install Tags
On Demand Resources Prafetch Order

¥ Build Locations

Build Products Path
Intermediate Build Fites Path

3. Confirm that the Attest.framework was properly added:

Build Phases Build Rules

Standard architectures [army7, armB4) - S{ARCHS_STANDARD) &
Latest I0S (05103} &

Multiple valuess
Yos &
Ne S
055
arméd armv7 armvis

bulid
bulld

Select the “Build Phases” tab at the top of the screen. Expand the “Link Binary With
Libraries” section if it is not already expanded. Check that “Attest.framework” is already
in the “Link Binary with Libraries” section. If it is not, drag and drop it into this section
from the file selector.

B < & YouR aPP MaME

(]
PROJECT
B rouR ase namE
TARGETS
oy YOLIR AP HAME

FOUR APP MAMETosts

* Target Dependencies {1 item)

* Compile Scurces (1 item]

¥ Link Rinry With Libeasias {1 tam)

S Attost tramewsrk

Required 3

* Copy Bundle Rescurces (0 ems)

Step 3: Confirm the Attest Framework is already properly linked into your Unit Tests

4. Confirm that your app builds and can run the test suite as normal.

For Automated Testing in Objective-C:

1. Please follow steps 1-3 in “For Automated Testing in Swift.” Note that the app will not
build — this is normal. To allow this framework to work properly with Objective-C,
update the Build Settings to “Always Embed Swift Standard Libraries”:

a. Navigate to the Unit Test Target settings (per Step 2 in “For Automated Testing
in Swift).

b. Click on the “Build Settings” tab.

c. Inthe search box, type “embed.” Under “Build Options,” change “Always Embed
Swift Standard Libraries” to “Yes.”

¥ Assets

Embed Asset Packs In Product Bundle No &

¥ Build Options

Always Embed Swift Standard Libraries Yes &

Step 1c: Update “Always Embed Swift Standard Libraries” to “Yes.”

d. Confirm that your app builds and can run the test suite as normal.

Running the Attest Framework in Automated Tests (Example in Swift):

To run the Attest Framework during automated testing, a few lines of code will need to be
added to your unit tests. Below are some examples of how to use the Attest Framework in
your automated tests. We used XCTest to demonstrate.

The following code sample is a simple example of using the Attest Framework.

XCTest
Attest

TestApp
TestAppTests:

testAccessibility() {
viewController = . (storyBoardName:

viewController. ()

(viewController: viewController).

First, we call “initialFrom(storyBoardName:) to store Main.storyboard’s initial View Controller in
as a variable named “viewController.” This function is part of an extension we added to
UlViewController, available for your use. More information regarding this function and the
UlViewController extensions can be found in the Attest Framework documentation.

Next, we call viewController.forceLoad() to ensure that all views have correctly loaded. There are
some interesting things that iOS does not do in a unit testing environment regarding view
loading. We have added extensions to UIViewController and UlView to help mitigate many of
these issues. To ensure that the Attest Framework is used to its full potential, we highly
recommend calling this “forceLoad()” function (or a variation of it) to your unit tests when using
our framework. See the Attest Framework documentation regarding the UlView and
UlViewController extensions for more information.

Finally, we call Attest.that(viewController:).isAccessible() to ensure that all views in
viewController are accessible. Attest.that(viewController:) expects a UlViewController to test.
There are other versions of Attest.that() that will be shown in the other examples, and can be
found in the Attest Framework documentation. isAccessible() has an optional parameter
(resultConsumer) that will be explained in other examples. If no parameter is defined in
isAccessible(), it will assume that all views in the view controller should be completely
accessible. Any view that is found to be inaccessible will fail the test case, and a description of
the violation will be in the log.

The following examples will explain the optional parameter of isAccessible().

isAccessible()’s parameter, resultConsumer, is important to use if you expect accessibility
violations (or “best practice” violations, or if you would just like to check the number of passing
views). We will give a few different examples of how to make sure that the violations found are
the ones that you expected.

Note: In these examples, we have removed the forceLoad() function for clarity.

testAccessibility_2() {
(storyBoardName: : ({(result:

(1, result.

Notice in this example, we use Attest.that(storyBoardName:) instead of Attest.that(viewController:
). This function retrieves the initial UIViewController from the storyboard listed and returns an
initialized Assert, which is the class needed to call isAccessible(). This version of the Attest.that()
function can retrieve a specific UlViewController in a Bundle as well; however, these are set to
nil by default if no parameter is listed. See the Attest Framework documentation for more
information on correct usage of the Attest.that() functions.

The parameter resultConsumer of the isAccessible() function is a function expecting an
Attest.Result as the parameter. In the above example, we expect the initial UIViewController in
storyboard “Main” to violate one Rule, as seen in the first call to XCTAssertEqual. The expected
Rule being violated is the Color Contrast Rule, as shown in the second call to XCTAssertEqual.
There will be two views in the initial UIViewController that are expected to violate this Rule, as
seen in the third call to XCTAssertEqual. If there are additional violations, the test case will fail,
and a description of the violation can be found in the log.

If you expect more than one Rule to be in violation, you can include a switch statement in your
resultConsumer function, as seen in the following example:

testAccessibility_3() {
(storyBoardName: : ({(result:

violation in result.
violation. {
RulelD. :
(4, violation. . , violation.

RulelD.

(2, violation. . , violation.

(0, violation. . , Violation.

In this example, the initial UIViewController in Main.storyboard is expected to have 4 violations
of the DontIntersect Rule and 2 violations of the DynamicType Rule. The “default” Rule is listed
to have 0 violations, since we do not expect any other Rules to be in violation. If this is not the
case, and other Rules are violated, the test case will fail and a description of the violation(s) can
be found in the log. See the Attest Framework documentation for more information on the
different Rules and proper usage of the Attest.that() functions.

Running the Attest Framework in Automated Tests (Example in
Objective-C):

To run the Attest Framework during automated testing, a few lines of code will need to be
added to your unit tests. Below are some examples of how to use the Attest Framework in
your automated tests. We used XCTest to demonstrate.

The following code sample is a simple Objective-C example of using the Attest Framework.

ViewController_test :

ViewController_test

- ()testAccessibility {

* viewController = [
[viewController I;
* result = [[:viewController]

(result.

First, we call initialFromStoryBoardName: to store Main.storyboard’s initial View Controller in a
variable named “viewController.” This function is part of an extension we added to
UlViewController, available for your use. More information regarding this function and the
UlViewController extensions can be found in the Attest Framework documentation.

Next, we call [viewController forceLoad] to ensure that all views have correctly loaded. There are
some interesting things that iOS does not do in a unit testing environment regarding view
loading. We have added extensions to UlViewController and UlView to help mitigate many of
these issues. To ensure that the Attest Framework is used to its full potential, we highly
recommend calling this “forceLoad” function (or a variation of it) to your unit tests when using
our framework. See the Attest Framework documentation regarding the UlView and
UlViewController extensions for more information.

Finally, we call [[Attest thatWithViewController:] isAccessible] to ensure that all views in
viewController are accessible. [Attest thatWithViewController:] expects a UlViewController to

test. There are other versions of [Attest that] that will be shown in the other examples, and can
be found in the Attest Framework documentation. isAccessible returns a Result*. This Result
can be printed or parsed through with Asserts to ensure that each view in the UlViewController
is accessible. In this example, we expect that there will be no violations, so we used an
XCTAssert to assure that the UlViewController has no violating views. We also decided to see a
detailed list of the Result. Printing the Result’s description shows the view hierarchy and lists
the views in violation of WCAG2.0 guidelines, the views that do not pass WCAG2.0 best
practices, the views that pass WCAG2.0 guidelines, and the views that are not applicable to
certain Rules.

The following examples will explain the many things that can be done with the returned Result
from isAccessible.

Note: In these examples, we have removed the forceLoad function for clarity.

- (void)testAccessibility?2 {
* result = [[

, result.

(result.
(result.
(result.

Notice in this example, we use [Attest thatWithStoryBoardName] instead of [Attest
thatWithViewController]. When the other parameters are NULL, it retrieves the initial
UlViewController from the storyboard listed and returns an initialized Assert, which is the class
needed to call isAccessible. This version of the [Attest that] function can retrieve a specific
UlViewController in a Bundle as well; however, these are set to NULL in this example. See the
Attest Framework documentation for more information on correct usage of the [Attest that]
functions.

With the Result* returned, we can use XCTAsserts if we expect there to be violations. In this
example, we expect the initial view controller of Main.storyboard to violate one Rule, as shown
in the first call to XCTAssertEqual. We expect three views in this view controller to violate this
Rule, as shown in the second call to XCTAssertEqual. The Rule being violated should be the
Dynamic Type Rule, so we check that with the third call to XCTAssertEqual. If there are
additional violations, the test case will fail, and a description can be found in the log.

If you expect more than one Rule to be in violation, you can use a switch statement to parse
through each Rule, as seen in the following example:

- YtestAccessibility3 {
*result = [[

*violation in result.
(violation.) {

(violation. . , violation.

(violation. . , violation.

(violation. . , violation.

In this example, the view named “view” is expected to have 4 violations of the DontIntersect
Rule and 2 violations of the DynamicType Rule. The “default” Rule is listed to have 0 violations,
since we do not expect any other Rules to be in violation. If this is not the case and other Rules
are violated, the test case will fail and a description of the violation(s) can be found in the log.
See the Attest Framework documentation for more information on the different Rules and

proper usage of the [Attest that] functions.

For Manual Testing in Swift:

IMPORTANT: In order for highlighting to work from the Attest Ul Client, VoiceOver MUST be
turned on. Highlighting will not work on Simulators.

1. Add the framework to your app:

With your app open in XCode, drag the “Attest.Framework” file into the “Frameworks”
folder of your app (located in the file selector). A pop up box will appear. Confirm that
“Copy Items if needed,” “Create folder references,” and the target for your app are all

selected. It should look identical to the image below. Select “Finish” to import the

B QA & = B BL [E1 YOUR APP NAME Choose options for adding these files:
v [E) YOUR APP NAME M0
Y [T PROJECT T Destination: [# Copy items if needed
.| AppDelegate.swift M -
E PP :
S} ViewController.swift (&) YOUR APP NAME » Troct Depedenciel Added folders: Create groups
Main.storyboara M TARGETS d P ° Create folder references
) Assets.xcassets A\ YOUR APP NAME » Compile Sources (21 Add to targets: [A, YOUR APP NAME
LaunchScreen.storyboard YOUR APP NAMETests

YOUR APP NAMETests
Info.plist

| | TESTTests
» TESTTests.swift M
Info.plist

¥ Link Binary With Libr

|| Products
Iv Frameworks I

+

» Copy Bundle Resourt

¥ Embed Frameworks |

Cancel [

Det
Subpath
Copy only when installing

Step 1: Add the Attest Framework to your app
2. Navigate to your app settings:

Next, select the xcodeproj file of your app from the file selector. A screen with the tabs
“Info” and “Build Settings” will appear, with your app name listed under “PROJECTS” on
the left-hand side. Select your app name under “TARGETS,” as shown in the image
below.

(O

PROJECT

¥ Custom iOS Target Properties

[Your aPP NAME

TARGETS

I 7 YOUR APP NAME I

"] YOUR APP NAMETests

» Document Types (0)

» Exported UTIs (0)

» Imported UTls (0)

» URL Types (0)

General Capabilities

Key

Bundle versions string, short

Bundle identifier

InfoDictionary version

Main storyboard file base name

Bundle version

Launch screen interface file base name
Executable file

Application requires iPhone environm...
Bundle name

» Supported interface orientations

Bundle OS5 Type code
Localization native development region

- Supported interface orientations (iPad}
» Required device capabilities

Step 2: Select your app under “TARGETS”

3. Add the framework as an Embedded Framework:

Select the “Build Phases” tab at the top of the screen.
a. Confirm that “Attest.framework” is already in the “Link Binary with Libraries”
section. If it is not, drag and drop it into this section from the file selector.

b. Expand the “Embed Frameworks” section and drag the Attest Framework into it.
It should look similar to the image below.

O
PROJECT
[& YOUR APP NAME
TARGETS
A% YOUR APP NAME
7] YOUR APP NAMETests

General Capabilities

+

b Target Dependencies (0 items)

> Compile Sources (2 items)

Resource Tags Info Build Settings

Resource Tags

€2 Ly 3 2 €0 3 €0 3 L3 L3 () L3 O 4D

Build Phases

Info Build Settings Build Phases

Value

1.0
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0

Main

1

LaunchScreen
${EXECUTABLE_NAME)
YES
$(PRODUCT_MAME)

(3 items)

APPL

en

(4 items)

(1 item)

Build Rules.

¥ Link Binary With Libraries (1 item)

£S5 Attest.framework

+

Required

» Copy Bundle Resources (3 items)

¥ Embed Frameworks (1item)

Subpath

~| Copy only when installing

B Attest.framework

+

Destination _Frameworks B

Step 3: Add the Attest Framework as an Embedded Framework

4. Confirm that your app builds and can run as normal.

5. Next, open the “AppDelegate.swift” file in your app.
a. Inthis file, import the Attest Framework:

Attest

b. In the function applicationWillResignActive(_ application: UlApplication), add the
following line of code:

—~
~

c. Inthe function applicationDidBecomeActive(_ application: UlApplication), add the
following line of code:

—
~

Note: the number “48484” may change, depending on your setup.
Attest.startServer(_ port: Ulnt) asks for a port number as a parameter. In most
cases, this number will be 48484.

The AppDelegate file should look similar to this when you are done:

UIKit
Attest

AppDelegate:

applicationWillResignActive(application:

0

applicationDidBecomeActive(application:

()

6. Confirm that your app builds and can run as normal.

For Manual Testing in Objective-C:

IMPORTANT: In order for highlighting to work from the Attest Ul Client, VoiceOver MUST be
turned on. Highlighting will not work on Simulators.

1. Please follow steps 1-3 in “For Manual Testing in Swift.” Note that the app will not build

—this is normal. To allow the framework to work properly with Objective-C, update the
Build Settings to “Always Embed Swift Standard Libraries”:

a. Navigate to the App Target settings (per Step 2 in “For Manual Testing in Swift”).

b. Click on the “Build Settings” tab.

In the search box, type “embed.” Under “Build Options,” change “Always Embed
Swift Standard Libraries” to “Yes.”

General Capabilities Resource Tags Info

Basic Customized [[EII) Levels +

Build Settings Build Phases Build Rules
1~ embed
¥ Assets

Setting A& DequeU

Embed Asset Packs In Product Bundle

¥ Build Options

Always Embed Swift Standard Libraries

Yes T

Step 1c: Update “Always Embed Swift Standard Libraries” to “Yes.”

d. Confirm that your app builds and can run the test suite as normal.

2. Next, open the “AppDelegate.m” file in your app.

a. Inthis file, import the Attest Framework:

Attest;

In the function —(void)applicationWillResignActive:(UlApplication *)application, add
: he
t

b.

following line of code:

c. Inthe function —(void)applicationDidBecomeActive:(UlApplication *)application, add
the following line of code:

Note: the number “48484” may change, depending on your setup. [Attest
startServer(_ port: Ulnt)] asks for a port number as a parameter. In most cases,

this number will be 48484.

The AppDelegate file should look similar to this when you are done:

Attest;
DQAppDelegate

)applicationWillResignActive:(*)application {
I;

)applicationDidBecomeActive:(*application {

l;

3. Confirm that your app builds and can run as normal.

	For Automated Testing in Swift:
	For Automated Testing in Objective-C:
	Running the Attest Framework in Automated Tests (Example in Swift):
	Running the Attest Framework in Automated Tests (Example in Objective-C):
	For Manual Testing in Swift:
	For Manual Testing in Objective-C:

Accessibility Report

		Filename:

		Attest Framework Installation for iOS.pdf

		Report created by:

		Scott Cooley, Product Documentation Specialist, scott.cooley@deque.com

		Organization:

		Deque Systems, Inc., Product Development

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

